黑龙江备考技巧

首页 > 黑龙江军转干考试 > 备考技巧

速看!秒杀2020军队文职考试中的“最值”问题

黑龙江华图 | 2020-03-24 14:38

收藏

  在数学运算的题目中经常会出现“最多”、“最少”、“最大”、“最小”等字眼,我们把这类问题统称为最值问题,最值问题是数学运算中非常重要的一种基本题型,在军队文职考试中易考点主要分为四类最值:最不利构造(也叫抽屉原理)、数列构造、多集合反向构造、复杂最值问题,而每一类问题都有自己本身的题型特征和固定的解题方法,需要考生快速匹配题目类型,结合方法,方能解题。

  【例1】有编号为1~13的卡片,每个编号有4张,共52张卡片。问至少摸出多少张,就可保证一定有3张卡片编号相连?

  A.27张 B.29张

  C.33张 D.37张

  【答案】D

  【解题思路】

  第一步,标记量化关系“至少”、“保证”。

  第二步,根据“至少”、“保证”可知本题为抽屉原理问题,答案为所有不利情况数+1。要求3张卡片编号相连,最不利的情况是已摸的牌里只有2张编号相连:1、2、4、5、7、8、10、11、13,每个编号有4张,共有4×9=36张卡片。

  第三步,故至少摸出36+1=37张。因此,选择D选项。

  【拓展】若认为有2张编号相连的不利情况数为:1,3,5,7,9,11,13,易误选B;若认为有2张编号相连的不利情况数为:2,3,5,6,8,9,11,12,易误选C。

  【例2】建华中学共有1600名学生,其中喜欢乒乓球的有1180人,喜欢羽毛球的有1360人,喜欢篮球的有1250人,喜欢足球的有1040人,问以上四项球类运动都喜欢的至少有几人?

  A. 20人 B. 30人

  C. 40人 D. 50人

  【答案】B

  【解题思路】

  第一步,标记量化关系“都”、“至少”。第二步,由“都”、“至少”可知,本题为多集合反向构造。解题步骤为:反向:不喜欢乒乓球的有1600-1180=420人,同理,不喜欢羽毛球、篮球、足球的分别有240、350、560人。加和:不喜欢四项运动任意一项的人最多有420+240+350+560=1570人。作差:故四项球类运动“都”喜欢的“至少”有1600-1570=30人。因此,选择B选项。

分享到

微信咨询

微信中长按识别二维码 咨询客服

全部资讯

copyright ©2006-2020 华图教育版权所有